
2178 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 10, OCTOBER 2020

LOOPLock: Logic Optimization-Based Cyclic
Logic Locking

Hsiao-Yu Chiang , Yung-Chih Chen , De-Xuan Ji , Xiang-Min Yang, Chia-Chun Lin ,
and Chun-Yao Wang, Member, IEEE

Abstract—SAT Attack, CycSAT, and Removal Attack have
demonstrated their abilities to break most existing logic locking
methods. In this article, we propose a new cyclic logic lock-
ing method to invalidate these attacks simultaneously. Our main
intention is to create noncombinational cycles to lock a circuit.
Specifically, the noncombinational behavior in the noncombina-
tional cycles that is unobservable at the primary outputs (POs)
needs to be preserved when the correct key-vector is fed to resist
CycSAT, and the noncombinational behavior in the noncombina-
tional cycles affecting POs needs to be preserved when the incor-
rect key-vector is fed to invalidate SAT Attack. Furthermore,
some nodes will be removed when applying our locking method,
which is able to defend Removal Attack. The experimental results
show the effectiveness and low area overhead of the proposed
method.

Index Terms—Cyclic logic locking, CycSAT, hardware security,
logic optimization, SAT Attack.

I. INTRODUCTION

THE GLOBALIZATION of IC design and manufacturing
flow enables fabless IC companies to purchase intellec-

tual property (IP) cores from third-party vendors for reducing
SoC design effort and send their designs to foundries for
fabrication. Although this model is time and cost-effective,
the IC/IP providers could expose their designs to threats,
such as piracy, overproduction, and counterfeiting. To deal
with this issue, a protection technique, called logic encryp-
tion/locking [8], was proposed recently to enable IC designers
to get control on their designs. It works by inserting extra
key-gates like XOR/XNOR-based gates and the primary inputs
(PIs), called key inputs, into a design to hide the functional-
ity. A locked design is functionally correct only if a correct

Manuscript received July 12, 2019; revised October 2, 2019; accepted
November 24, 2019. Date of publication December 17, 2019; date of cur-
rent version September 18, 2020. This work was supported in part by
the Ministry of Science and Technology of Taiwan under Grant MOST
107-2221-E-155-046, Grant MOST 108-2221-E-155-047, Grant MOST 106-
2221-E-007-111-MY3, and Grant MOST 108-2218-E-007-061. This article
was recommended by Associate Editor R. Karri. (Corresponding author:
Chia-Chun Lin.)

Hsiao-Yu Chiang, De-Xuan Ji, Xiang-Min Yang, Chia-Chun Lin, and
Chun-Yao Wang are with the Department of Computer Science, National
Tsing Hua University, Hsinchu 30013, Taiwan (e-mail: johnny19941007
@gmail.com; jidx1994@gmail.com; yhm19930125@gmail.com; chiachunlin
@gapp.nthu.edu.tw; wcyao@cs.nthu.edu.tw).

Yung-Chih Chen is with the Department of Computer Science and
Engineering, Yuan Ze University, Taoyuan 32003, Taiwan (e-mail:
ycchen.cse@saturn.yzu.edu.tw).

Digital Object Identifier 10.1109/TCAD.2019.2960351

secret key, known to the designer only, is fed into the key
inputs. With increasing the number of key-gates, the difficulty
of the decryption grows exponentially. Several logic locking
methods have been proposed and they are primarily different
in the locations for inserting the extra logic gates and key
inputs [7], [8], [11], [21]–[23], [27].

Conversely, logic decryption is an attacking technique that
identifies the secret key of a locked design, and is an important
manner for evaluating the security of logic locking methods.
Satisfiability (SAT) Attack [15] is an attacking method based
on Boolean satisfiability algorithms to decrypt several tradi-
tional locking methods. The SAT Attack constructs a miter-like
circuit with two copies of the locked netlist, which shares
the same PIs but has independent key inputs, to identify the
differences between their primary outputs (POs). Then SAT
solvers will be called to find the distinguishing input patterns
(DIPs) iteratively. The DIPs are used to filter out all the incor-
rect key-vectors, which is the main concept of SAT Attack.
When there is no DIP found by the SAT solver, all the incor-
rect key-vectors are filtered out and the attack is successful.
Because a DIP can rule out multiple incorrect key-vectors,
once SAT Attack decrypts the locked circuits quite efficiently.
Some attacking methods [1], [6], [9], [14], [16]–[20], [28]
based on the SAT Attack have been proposed in different
purposes against locking methods.

In spite of the effective decryption from SAT Attack, SAT
Attack still has some shortcomings. For example, if the DIP in
SAT Attack can rule out multiple incorrect key-vectors once,
SAT Attack is very efficient. However, for some new locking
methods [22], [23], the DIP can only rule out one incorrect
key-vector once, which lowers the performance of the SAT
Attack, and SAT Attack acts like a brute force method under
this situation.

One of the objectives in these methods was to drag out
the time required in the process of the SAT Attack [22],
[23]. However, these methods have vulnerabilities to Removal
Attack [25], [26], which is a method locating and then remov-
ing or bypassing security structures to restore the original
functions. Removal Attack has the advantage of being able
to identify the locked structures in the circuit. The positions
of the locked structures are obtained by calculating the prob-
ability of a signal value of 1 and 0 in the circuit. However,
even if Removal Attack can find and remove all the locked
structures, it may still face a challenging scenario. That is,
when the defender also removes a certain subcircuit from the
original circuit during the locking process, Removal Attack

0278-0070 c© 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: National Tsing Hua Univ.. Downloaded on September 28,2020 at 07:51:37 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-7194-5878
https://orcid.org/0000-0002-3934-800X
https://orcid.org/0000-0002-3732-1807
https://orcid.org/0000-0002-0136-9825

CHIANG et al.: LOOPLock: LOGIC OPTIMIZATION-BASED CYCLIC LOGIC LOCKING 2179

Fig. 1. Example demonstrating the cyclic logic locking. (a) Inverter locked
into a cyclic structure. (b) AND gate locked into a cyclic structure.

cannot recover the original circuit by just removing the locked
structures after the unlocking process.

Another known characteristic that SAT-based attacking
methods usually cannot well deal with is transitional data, like
delay or timing. Hence, a timing-based logic locking method
with a tunable delay key-gate (TDK) scheme called delay
logic locking (DLL) was proposed in [21]. However, there are
other methods based on the SAT Attack model to simulate the
behavior of the delay-locked logic to crack the DLL [1], [6].

Cyclic logic locking [13] is another defense technique
proposed against the SAT Attack. This technique is to destroy
the directed acyclic graph (DAG) structure by randomly gener-
ating feedback loops (cycles) in the circuit. Despite the supe-
rior effectiveness of cyclic logic locking, this technique was
still cracked by CycSAT [9], [20], [28]. CycSAT consists of
two versions, CycSAT-I and CycSAT-II, for different purposes.

CycSAT-I aims to find a correct key-vector that breaks the
cycles in the circuit and restore to the original acyclic circuit.
For achieving this, CycSAT-I needs to compute the “no struc-
tural cycle” condition on the key values and find a correct
key-vector to break the cycles. For example, Fig. 1(a) shows
a cyclic locked circuit, and its original circuit is an inverter.
To break the cycle in Fig. 1(a), CycSAT-I will compute the no
structural cycle condition for the cycle in Fig. 1(a), and obtain
the correct key value of K1 = 0, then the resultant circuit will
be restored to the original inverter.

CycSAT-II assumes that when a correct key-vector is
applied to the circuit, the remaining cycle in the resultant
circuit is combinational rather than noncombinational. For
achieving this, CycSAT-II needs to compute the “no sensitiz-
able cycle” condition, which is different from the no structural
cycle condition of CycSAT-I. In addition to the key values,
the no sensitizable cycle condition considers the side inputs
of each cycle. The reason for considering side inputs addition-
ally is that CycSAT-II does not allow any noncombinational
cycle in the circuit after decryption, which means that it
will check whether the side inputs of a cycle have input-
noncontrolling values simultaneously under an input pattern.
If so, it will break the noncombinational cycle by selecting
an appropriate key value. For example, Fig. 1(b) shows the
cyclic locked circuit, and its original circuit is an AND gate.
To break the cycle in Fig. 1(b), CycSAT-II will compute the no
sensitizable cycle condition for the cycle in Fig. 1(b). First,
CycSAT-II will observe the values of the keys and the side
inputs that are able to cause the noncombinational cycle in
the circuit. In Fig. 1(b), when K2 = 1 and X3 = 1, the
cycle in Fig. 1(b) will be a noncombinational cycle. Then,
CycSAT-II will force K2 = 0 to avoid this situation and

break the condition about the noncombinational cycles in the
circuit.

The advantage of CycSAT is that both its versions con-
sider all aspects of cyclic locking techniques. Specifically, it
considers the condition of transforming the cyclic locked cir-
cuit to its original acyclic one and considers the condition
of having the cycles in the locked circuit and the original
one. It also can efficiently find out all the cyclic structures.
However, the disadvantage of CycSAT is that it does not con-
sider a situation: noncombinational cycles are still reserved
when the correct key-vector is fed. When this situation hap-
pens, CycSAT-II will obtain an incorrect key-vector. This is
because it assumes that noncombinational cycles are illegal
and have to be ruled out.

Thus, cyclic unresolvable using unreachable states [10] uti-
lizes unreachable states to create noncombinational cycles
under any correct key-vector, which obfuscates CycSAT for
obtaining incorrect key-vectors. Furthermore, SRClock [11]
builds super cycles to exponentially prolong the time required
in CycSAT for analyzing all the cycles in the circuit.

Although the locking methods [10]–[12], [22]–[24] have
been demonstrated to defend SAT Attack, Removal Attack, or
CycSAT successfully, these methods either cannot invalidate
two of them or can be attacked by their extensions. Thus, in
this article, we propose a cyclic logic locking method based
on logic optimization that can invalidate all the SAT Attack,
Removal Attack, and CycSAT. Our main intention is to cre-
ate cycles into the circuit and these cycles will not be broken
when the correct secret key-vector is applied. These cycles
are constructed by adapting a logic optimization technique,
node merging (NM) [4], [5]. Since the created cycles will be
preserved under the correct secret key-vector, the proposed
approach can invalidate SAT Attack and CycSAT.

For defending SAT Attack, we create a cycle pair (Type-I)
with the noncombinational cycles, which affects POs when
the incorrect key-vector is fed. This noncombinational behav-
ior will let the SAT solver obtain multiple solutions or no
solution to invalidate SAT Attack. For defending CycSAT, we
create a cycle pair (Type-II) with the noncombinational cycles,
which are unobservable at the POs of the circuit when the cor-
rect key-vector is fed. Furthermore, Removal Attack cannot
unlock the locked circuit by simply removing the locked sub-
circuit due to the absence of location information of merged
nodes. This is because the merged nodes are disappeared in
the locked circuit.

The main contributions of this article are twofold.
1) We propose a cyclic logic locking method using a logic

optimization technique, which is different from previous
locking methods.

2) The proposed method is able to defend all the SAT
Attack, CycSAT, and Removal Attack.

The remainder of this article is organized as follows.
Section II discusses the similar work with our method.
Section III introduces the combinational cycles created by
the NM technique. Section IV elaborates on our cyclic logic
locking method. Section V evaluates the security under differ-
ent attacking methods. The experimental results are shown in
Section VI. Finally, Section VII concludes this article.

Authorized licensed use limited to: National Tsing Hua Univ.. Downloaded on September 28,2020 at 07:51:37 UTC from IEEE Xplore. Restrictions apply.

2180 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 10, OCTOBER 2020

II. RELATED WORK AND COMPARISON

In this section, since this article is related to cyclic logic
locking, we will discuss the pros and cons of our method
compared with other related cyclic locking techniques, includ-
ing cyclic logic locking [13], SRClock [11], and cyclic
unresolvable using unreachable states [10].

A. Cyclic Logic Locking

Cyclic logic locking is proposed to defend SAT Attack. This
technique destroys the DAG structure by randomly generat-
ing feedback loops (cycles) in the circuit. Our approach is an
extension of this technique. However, our approach sophisti-
catedly inserts cycle pairs into the circuit such that cycles exist
under correct or incorrect key-vectors.

1) Pros: Since the cyclic logic locking technique simply
adds a MUX to create the cycles for locking, it becomes invalid
when an attacker breaks all the cyclic structures. CycSAT is
the method that can attack this cyclic logic locking technique.
However, our approach cannot be unlocked by removing all
the cyclic structures in the circuit. This is because our locking
approach still reserve cycles in the circuit when the correct
key-vector is applied.

2) Cons: Our approach exploits logic optimization tech-
niques to create Type-I and Type-II cycle pairs. Unfortunately,
only a limited number of cycle pairs are found in some small-
size benchmarks. The number of identified cycle pairs to be
inserted is various and circuit-dependent for different circuits.

B. SRClock

SRClock is proposed to defend CycSAT. This technique is
to build an extremely large amount of cycles called “super
cycles” in the circuit. With having these cycles in the circuits,
it is a challenge for attackers to search and break all the cycles
efficiently.

1) Pros: Although SRClock creates lots of cycles in the
circuit to prolong the time required in CycSAT for break-
ing all the cycles in the circuit, the locked circuit still could
be unlocked. If the time for searching the cyclic structures
in the circuit could be reduced, the cycles would be broken
within one day by CycSAT. On the other hand, the area over-
head of this technique is high due to super cycle construction.
However, the concept of this article is to invalidate CycSAT
fundamentally. Only one cycle pair is enough to resist CycSAT,
with little area overhead.

2) Cons: The advantage of SRClock is that it can arbi-
trarily build super cycles in the circuit. However, our method
exploits NM and NM-based cycle generation techniques to
create Type-I and Type-II cycle pairs. Unfortunately, an only
limited number of cycle pairs are found in some small-size
benchmarks. The number of identified cycle pairs is various
and circuit-dependent for different circuits.

C. Cyclic Unresolvable Using Unreachable States

The authors proposed a method using unreachable states to
create noncombinational cycles under any correct key-vector
in the circuit, which obfuscates CycSAT. The main idea of our
method is also to reserve noncombinational cycles under the
correct key-vector.

1) Pros: Most logic locking techniques add locked struc-
tures to the original circuits. If the locked structures are
identified and removed, the resultant circuit is the same as
the original one. Cyclic unresolvable using unreachable states
technique is also no exception. However, our proposed method
uses logic optimization techniques to lock the circuit, which is
unique to other locking techniques. When the locked structures
by our method are identified and removed, the attacker still
faces a challenge that how to restore the removed subcircuit
in the original circuit.

2) Cons: Our method exploits NM and NM-based cycle
generation techniques to create Type-I and Type-II cycle pairs.
Unfortunately, only a limited number of cycle pairs are found
in some small-size benchmarks. The number of identified cycle
pairs is various and circuit-dependent for different circuits.
Conversely, cyclic unresolvable using unreachable states tech-
nique uses a condition where some inputs are always 0 in the
reachable states, creating another situation that these inputs
are 1 in the unreachable states and noncombinational cycles
are generated.

III. PRELIMINARIES

Since this article is based on NM [4], [5] and NM-based
cycle generation [3] techniques, and there are various VLSI
testing concepts in these two works, we first introduce some
terminologies related to VLSI testing in this section. Then we
explain the cycle generation technique [3] based on NM.

A. Background

An input-controlling value of a gate g is the value once
applied to its inputs, the output value of g can be deter-
mined. An input-noncontrolling value is the inverse of input-
controlling value. A gate h is said to be in the transitive fanout
cone of a gate g if there exists a path connecting from g to h.
On the contrary, a gate g is in the transitive fanin cone of a
gate h when there is a path leading from g to h.

The dominators of a gate g are defined as the gates that paths
start from g to any PO would pass through. A side input of
a dominator is a fanin of a dominator that is not on the path
from a gate g to its dominator.

A stuck-at fault is a fault model that is used to model man-
ufacturing defects on wires or logic gates. A stuck-at 1 (0)
fault on a wire or a gate means that the signal on the wire or
gate is stuck to a fixed logic value 1 (0) due to manufacturing
defects. A stuck-at fault test is a process to generate test pat-
terns that are capable of distinguishing a faulty circuit from
the fault-free one. The requirements for a stuck-at fault test
are to activate the fault effect and then to propagate the fault
effect to any POs. If there exists no pattern for the fault, the
fault is an untestable fault. For an untestable fault, the corre-
sponding wire or gate is redundant and can be replaced by a
constant value, either 1 or 0, depending on the faulty value.

The mandatory assignments (MAs) are necessary values
assigned to some wires to generate a test pattern for a fault on a
wire w. Consider a stuck-at fault on a wire w, the assignments
obtained by setting w to the fault-activating value and by set-
ting the side inputs of dominators of w to the fault-propagating
values are MAs. Then, these assignments can be propagated

Authorized licensed use limited to: National Tsing Hua Univ.. Downloaded on September 28,2020 at 07:51:37 UTC from IEEE Xplore. Restrictions apply.

CHIANG et al.: LOOPLock: LOGIC OPTIMIZATION-BASED CYCLIC LOGIC LOCKING 2181

Fig. 2. Example for identifying node mergers to minimize the circuit.
(a) Original circuit. (b) Resultant circuit after merging n1 and n3. (c) Cyclic
circuit after merging n3 and n5.

forward or backward to infer additional MAs by performing
logic implications. For example, to activate the fault effect of
a stuck-at 0 fault on a wire w, w needs to be assigned a value
of 1; to propagate the fault effect, the side inputs of all domi-
nators need to be assigned input-noncontrolling values. If the
MAs are inconsistent, no test pattern exists for this fault.

B. Node Merging

NM [4], [5] is a logic optimization technique, which is
capable of detecting mergers and thus achieving minimized
resultant circuits with considering observability don’t cares
(ODCs). In [4] and [5], the process of merging two nodes
was modeled as a misplaced-wire error. Take Fig. 2(a) as an
example, the functionalities of n1 and n3 only differ when
z = 1 and x = y. Replacing n3 with n1 causes a misplaced-
wire error, which is the functional difference under z = 1 and
x = y. However, x = y implies n2 = 0, and n2 = 0 blocks
the error effect so that the error effect is not observable at n5,
which means that the error is undetectable. Thus, when this
error is undetectable, merging the two nodes will not affect
the overall functionality of the circuit. For detecting this error,
an input pattern has to cause different values on nt and ns for
error activation, and propagate the error-effect to any POs. If
there does not exist any input pattern that can detect the error,
the error is undetectable and the replacement of nt with ns

is safe in terms of functionality. Condition 1 is the sufficient
condition for finding node mergers.

Condition 1 [4], [5]: Let f denote an error of replacing nt

with ns. If ns = 1 or D, and nt = D are MAs for the stuck-at
0 fault test on nt, and ns = 0 or D, and nt = D are MAs for
the stuck-at 1 fault test on nt, f is undetectable.

The D and D symbols in Condition 1 are often used in
ATPG algorithms. D means that the value is 1/0, where 1 is
the fault-free value, and 0 is the faulty value. Contrarily, D
means that the value is 0/1, where 0 is the fault-free value,
and 1 is the faulty value. From the viewpoint of functionality,

because nt = D (D) actually activates nt to 1 (0) for the stuck-
at 0 (1) fault test, and ns = 1 (0) or D (D) is also an MA,
the replacement of nt with ns does not alter the functionality
based on Condition 1.

In Condition 1, nt denotes a target node, and ns denotes
a substitute node. Merging nt and ns is equivalent to replac-
ing nt with ns, that is, connecting ns to nt’s fanout node and
then removing nt. Thus, the process of identifying the node
mergers is transformed into performing two logic implica-
tions by Condition 1: deriving the MAs for the stuck-at 0
and stuck-at 1 fault tests on nt.

We use the circuit in Fig. 2 to illustrate the merger iden-
tification algorithm. For simplicity, the example circuits in
the rest of this article are represented in and-inverter graphs
(AIGs). Vertices in an AIG represent two-input AND gates;
edges represent the connections among the gates; the dots on
edges represent inverters. In Fig. 2(a), we compute MAs for
the stuck-at 0 and stuck-at 1 fault tests on nt = n3 by activat-
ing and propagating the fault effects. The resultant MAs for
the stuck-at 0 fault test on n3 are {n3 = D, y = 0, z = 1,
n2 = 1, x = 1, n1 = 1, n4 = 0, n5 = D} and that for the
stuck-at 1 fault test on n3 are {n3 = D, n2 = 1, x = 1, y = 0,
z = 0, n1 = 0, n5 = D}. According to Condition 1, n1 and n5
satisfy the requirements and can be mergers. However, only
n1 was used as ns to replace n3 in [4] and [5]. This is because
using n5, a cyclic structure that [4], [5] did not deal with will
be introduced. Fig. 2(b) shows the resultant circuit, which is
smaller in terms of the node count, after merging n3 with n1.

C. NM-Based Cycle Generation

From the previous example in Section III-B, Chen and
Wang [4], [5] did not choose n5 in Fig. 2(a) as a substitute
node ns to replace the target node n3. The reason is that n5
lies in the transitive fanout cone of n3, and the replacement
of n3 with n5 forms a cycle. Fig. 2(c) shows the circuit after
replacing n3 with n5, where n2 is a side input of n5. When n2
is 1, which is an input-noncontrolling value to n5 in Fig. 2(c),
the value on the cycle will depend on the previous value on the
cycle, which leads to noncombinational behavior. This cycle
is called a noncombinational cycle. Hence, Chen et al. [3]
proposed Theorem 1 to describe the requirement about being
combinational cycles.

Theroem 1 [3]: Let nt denote a target node and ns denote
a substitute node in the transitive fanout cone of nt. Replacing
nt with ns forms a set of cycles L. If the value changes on nt

are never propagated to ns, which means all the side inputs
of L do not have input-noncontrolling values simultaneously,
L is combinational.

According to Theorem 1, to check if the value changes on
nt are propagated to ns or not, we can generate an input pattern
that propagates the fault effect from nt to ns. If no such an
input pattern exists, it satisfies Theorem 1 and the formed loop
is combinational. The ns is a cyclic substitute node (CSN).

However, if we would like to find all CSNs, we need to test
if there exists a pattern that propagates the fault effect for each
pair of nt and ns. This process would be computation-intensive.
Thus, [3] proposed Condition 2 based on Condition 1 in

Authorized licensed use limited to: National Tsing Hua Univ.. Downloaded on September 28,2020 at 07:51:37 UTC from IEEE Xplore. Restrictions apply.

2182 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 10, OCTOBER 2020

Fig. 3. Example demonstrating the procedure of candidate CSN identification.
(a) Circuit before n1 and n7 are merged. (b) MAs for the stuck-at 0 fault test
on n1. (c) MAs for the stuck-at 1 fault test on n1. (d) Circuit after n1 and n7
are merged.

Section III-B to efficiently identify candidate CSNs, which
are possibly able to form combinational cycles after merging.

Condition 2: Let nt denote a target node, and ns denote a
substitute node in the transitive fanout cone of nt. Replacing
nt with ns forms a set of cycles L. If ns = 1 and nt = D
are MAs for the stuck-at 0 fault test on nt, and ns = 0 and
nt = D are MAs for the stuck-at 1 fault test on nt, ns is a
candidate CSN.

Different from Condition 1, Condition 2 did not include the
situation, “ns = D and ns = D are MAs for the stuck-at 0 and
stuck-at 1 fault tests on nt, respectively,” in it. The reason is
that if this situation is included, it will conflict with “the value
changes on nt are never propagated to ns” in Theorem 1.

We use an example in Fig. 3 to show how to exploit
Condition 2 to facilitate candidate CSN identification. In
Fig. 3(a), suppose that we choose nt = n1. We first perform
the stuck-at 0 fault test on n1, the corresponding MAs are
{X2 = 1, X3 = 1, n1 = D, X1 = 0, n2 = D, n3 = D, n4 = 0,
n5 = 1, n6 = 0, n7 = 1}, as shown in Fig. 3(b). Then, for
the stuck-at 1 fault test on n1, the corresponding MAs are
{n1 = D, X1 = 0, n2 = D, n4 = 0, n7 = 01} as shown

1One may be curious about why n7 = 0 is an MA for the stuck-at 1 fault
test on n1. The reason is as follows: to activate the fault effect on n1, one
of X2 and X3 has to be 0. If X2 = 0, which implies n7 = 0. On the other
hand, if X2 = 1 and X3 = 0, accomplished with n4 = 0, it will infer n5 = 1,
n6 = 1, and finally n7 = 0. Therefore, n7 = 0 is also an MA for the stuck-at
1 fault test on n1.

in Fig. 3(c). Thus, only n7 is identified as a candidate CSN,
which is possible to replace n1 to form a combinational cycle.

However, Condition 2 only partially satisfies Theorem 1,
which means n7 is only a candidate CSN rather than a CSN.
The reason is that Condition 2 only can ensure the combina-
tionality of the formed cycles under the input patterns nt = D
and nt = D. As a result, Chen et al. [3] used an SAT-based
algorithm to validate whether a candidate CSN is a CSN under
other input patterns. In fact, n7 is a CSN indeed in this exam-
ple. Fig. 3(d) shows the cyclic circuit after replacing n1 with
n7. We observe that the side inputs, X1, X1, X2, and X3 of the
nodes in the cycle, cannot have input-noncontrolling values
simultaneously. Thus, the cycle formed by merging n1 and n7
is combinational.

IV. OUR METHOD

In this article, we exploit the techniques mentioned in
Section III to develop our logic locking method. The locked
circuit is cyclic with combinational and noncombinational
cycles. However, when the correct key-vector is fed, the
unlocked circuit is still cyclic. In Section III, we have
explained how to create a functionally correct combinational
cycle. Next, we will discuss how to create noncombinational
cycles based on two different conditions either−affecting the
POs, or unobservable at the POs, to invalidate SAT Attack and
CycSAT. Furthermore, the proposed method will remove target
nodes based on NM technique to obfuscate Removal Attack.

According to Theorem 1, the sufficient condition ensuring
the formed cycle L is combinational is that the value changes
on nt are never propagated to ns. That is, there exists a node
nb in the path from nt to ns, which blocks the effect of the
value changes. Based on the insight, if we would like to create
a noncombinational cycle, we can replace nt with a node in
between nt and nb. Additionally, if there is any PO located at
a node prior to nb, the value changes on nt will affect the PO;
otherwise, the value changes on nt is unobservable at the PO.

However, if we create a noncombinaitonal cycle affecting
POs, the functionality of the circuit will be changed. Hence, to
preserve the functionality of the circuit when the correct key-
vector is fed, we propose a scheme that creates a cycle pair
(Type-I): one is a noncombinational cycle affecting POs (L1),
the other is a functionally correct combinational cycle (L2).
Then we use a MUX (M1) and a key input (K1) to configure
them, as shown in Fig. 4(a).

In Fig. 4(a), the dotted node T1 is the target node nt to be
replaced. Using the method in [3]–[5], we can identify that the
node S1 is a substitute node ns for T1. Next, let us consider the
input pattern {X1 = 0, X2 = 1, X3 = 0}. Under this pattern, the
effect of removing T1 is blocked at n3 since X1 is 0 (nb = n3).
Thus, we can choose n1 (n1 is in between nt and nb) to create
a noncombinational cycle L1 that affects POs (the PO y1 is
located at node n2 prior to nb = n3). We also choose S1 to
create a functionally correct combinational cycle L2. We use
the MUX M1 controlled by the key input K1 to connect these
two cycles, and K1 determines that one of n1 and S1 will be
selected for substituting T1. On the other hand, since T1 is a
multiple fanout node, considering the removal of T1 changing
the functionality of other fanout’s subcircuit, we add another

Authorized licensed use limited to: National Tsing Hua Univ.. Downloaded on September 28,2020 at 07:51:37 UTC from IEEE Xplore. Restrictions apply.

CHIANG et al.: LOOPLock: LOGIC OPTIMIZATION-BASED CYCLIC LOGIC LOCKING 2183

Fig. 4. Example for demonstrating two types of cycles in LOOPlock.
(a) Type-I cycle pair. (b) Type-II cycle pair.

MUX M2, which is also controlled by K1, for restoring the
functionality by selecting the substitute node S1 with K1 = 1.
Hence, if K1 = 0, node n2 will be selected by M2 but cannot
restore the functionality. This is because n2 is prior to nb,
which satisfies the condition of generating noncombinational
cycles, the value change will be propagated to PO y2 to alter
the functionality of the circuit.

The mission of Type-I cycle pair is to defend SAT Attack.
Its effectiveness is explained as follows: Since there is a non-
combinational cycle affecting POs in the Type-I cycle pair, at
least one PO has indefinite value. When SAT Attack uses SAT
solvers to find the DIP, the indefinite value at POs will make
the SAT solving calls never terminate. The detailed evaluation
of the Type-I cycle pair under SAT Attack will be discussed
in Section V.

After creating the Type-I cycle pair to defend SAT Attack,
we create another cycle pair (Type-II): one is a noncombi-
national cycle that is unobservable at POs (L4), the other is
a functionally incorrect combinational cycle (L3), to invali-
date CycSAT. We also use a MUX (M3) and a key input (K2)
to configure them, as shown in Fig. 4(b). We have explained
how to create a functionally correct combinational cycle in
Section III. If we want to create a functionally incorrect combi-
national cycle, we just choose a node that has different values
with nt under one input pattern as the substitute node, like n10
in Fig. 4(b).

In Fig. 4(b), the dotted node T2 is the target node nt to
be replaced and node S2 is a substitute node ns for T2. We
consider the same input pattern {X1 = 0, X2 = 1, X3 = 0}.
Under this pattern, the effect of removing T2 is blocked at
n9 since X1 is 0 (nb = n9). Thus, we can choose n7 (n7
is in between nt and nb) to create a noncombinational cycle
L4 that is unobservable at POs (no PO is located at nodes
prior to nb = n9), and choose n10 to create a functionally
incorrect combinational cycle L3. We use another MUX M3

controlled by a key input K2 to connect these two cycles,
and K2 determines that one of n7 and n10 will be selected
for substituting T2. Furthermore, we also need to restore the
functionality as Type-I cycle pair does. As a result, we use
another MUX (M4), also controlled by K2, for restoring the
functionality by selecting the substitute node S2 with K2 = 1.
However, if K2 = 0, n11 will be selected, which cannot restore
the functionality. This is because n11 has a different value with
T2 under one input pattern, and this effect will be propagated to
the PO y4 such that the functionality of the circuit is changed.

In fact, the Type-II cycle pair is exactly opposite to the
Type-I cycle pair, and it is able to resist CycSAT due to the
following reason. For CycSAT, it ensures that all the cycles
are combinational after decryption, which means that non-
combinational cycles are not allowed. However, there exists
a noncombinational cycle, which is unobservable at POs, in
Type-II cycle pair. Since the behavior of noncombinational
cycle is unobservable at POs, it is harmless to the func-
tionality of the circuit. Thus, CycSAT will filter out the
noncombinational cycle, and select the functionally incor-
rect combinational cycle in Type-II cycle pair. As a result,
the obtained key is incorrect. The detailed evaluation of the
Type-II cycle pair under the attack of CycSAT will also be
discussed in Section V.

When creating cycles in the Type-I and Type-II cycle pairs,
the target node nt will be removed permanently. Hence, for
Removal Attack, it cannot break the locking by just remov-
ing the feedback loops and the added MUXes, M1∼M4. The
absence of location information about the original target node
nt invalidates the decryption from Removal Attack.

V. EVALUATION

In this section, we evaluate the security of a locked circuit
by the proposed logic locking method under the attacks of
SAT Attack, CycSAT, and Removal Attack.

A. SAT Attack

SAT Attack transfers the decryption problem into the SAT
problem by constructing a miter-like circuit. In each iteration,
it identifies a DIP by an SAT solving call, and then uses the
DIP and its corresponding output pattern to prune incorrect
keys. To demonstrate the effectiveness of our method, we
construct a miter-like circuit, which consists of two copies
of Type-I cycle pair, as shown in Fig. 5. Then we use SAT
solvers to find the DIP. Note that we only construct Type-I
cycle pair in this example for simplicity since its mission is
for defending SAT Attack.

In the example of Fig. 5, the correct key value is K1 = 1. We
will see that SAT Attack cannot obtain this value successfully.
In the first iteration of SAT solving call, we may find a DIP
(X1 = 0, X2 = 1, X3 = 1, X4 = 1). Then, this DIP and its
corresponding outputs of the locked circuit, which are (y1 = 1,
y2 = 1), will be added as a constraint in the SAT solving
formula. This constraint will force K1 = 1. Next, in the second
iteration, it may find another DIP (X1 = 0, X2 = 1, X3 = 0,
X4 = 0). Similarly, this DIP and the corresponding outputs of
the locked circuit, which are (y1 = 0, y2 = 0), will be added as
another constraint in the SAT solving formula. However, this

Authorized licensed use limited to: National Tsing Hua Univ.. Downloaded on September 28,2020 at 07:51:37 UTC from IEEE Xplore. Restrictions apply.

2184 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 10, OCTOBER 2020

Fig. 5. Miter-like circuit with Type-I cycle pair.

Fig. 6. Miter-like circuit with Type-I cycle pair after adding an extra inverter
in each noncombinational cycle in Fig. 5.

constraint will force K1 = 0. Then, in the third iteration, it
may find the same DIP (X1 = 0, X2 = 1, X3 = 0, X4 = 0) and
force K1 = 0 again. We have known that a DIP in SAT Attack
can prune incorrect keys. From the iterations mentioned, we
observe that the constraints cannot force K1 = 1 and K1 = 0
simultaneously, which means the incorrect key value (K1 = 0)
cannot be pruned. In other words, the SAT Attack will be
never terminated since the DIPs cannot prune the incorrect
keys. Hence, SAT Attack fails to unlock the circuit locked by
our method.

Additionally, we observe a variant of Type-I cycle pair,
which is also useful for defending SAT Attack, in this arti-
cle. That is, we add an extra inverter in the noncombinational
cycle of Type-I cycle pair. As shown in Fig. 6, the extra
inverters are added at the output of n1 and n1′ of miter-like
circuit of Fig. 5. After adding extra inverters in Fig. 5, unfor-
tunately, SAT Attack cannot find any DIP, which means that
SAT solvers return UNSAT in the first solving call. This is
because the noncombinational behavior oscillates after adding
the inverters in the noncombinational cycles of Fig. 5. That
is, SAT solvers cannot find a definite value on each node in
these cycles, which leads to UNSAT. Without having the DIP,
SAT Attack cannot prune incorrect keys. Thus, we can either
use the original Type-I cycle pair or its variant in the locked

Fig. 7. Example circuit with Type-II cycle pair.

circuit, which further obfuscates attackers. In summary, logic
locking by creating Type-I cycle pair invalidates SAT Attack.

B. CycSAT

CycSAT [28] contains CycSAT-I and CycSAT-II versions
for different purposes. We will discuss how the proposed
method is able to defend both of them. We use the example in
Fig. 7, which contains Type-II cycle pair only for simplicity,
to demonstrate the ability of our method.

For CycSAT-I, it needs to compute the key values to break
cycles. Equation (1) is the result that the CycSAT-I algorithm
applied on the example of Fig. 7

F(A, A′) = (F(A, B) ∨ bk(B, A′)) ∧ (F(A, E) ∨ bk(E, A′))
= −K2 ∧ K2 = 0. (1)

In Fig. 7, there exist two cycles L3 and L4, where L4 is
inside L3. To find the key values for breaking cycles L4 and
L3, the function of key value F(A, A′) is derived, where A
and A′ are the start point and end point of both L3 and L4.
Since there are two cycles in Fig. 7, F(A, A′) is composed
of two terms, F(A, B) ∨ bk(B, A′) represents cycle L4, and
F(A, E) ∨ bk(E, A′) represents cycle L3, where bk(B, A′) and
bk(E, A′) are the conditions of key values such that B cannot
affect A′, and E cannot affect A′, respectively. As a result, for
breaking L4, K2 has to be 0 while K2 is 1 for breaking L3.
The function of key value for breaking both cycles L4 and
L3 is −K2 ∧ K2, which leads to contradiction. Thus, no key
value can be obtained to attack the locked circuit of Fig. 7 by
applying CycSAT-I.

For CycSAT-II, in addition to the key values, the side input
values have to be considered as well for breaking cycles. This
is because CycSAT-II assumes that there does not exist any
noncombinational cycles in the circuit after decryption. If the
side inputs of nodes in a cycle are all input-noncontrolling
values simultaneously under an input pattern, CycSAT-II will
break the cycle by selecting appropriate key values. In the
example of Fig. 7, the function of key values and side inputs
F(A, A′) for breaking cycles is derived as (2)

F(A, A′) = (F(A, B) ∨ ns(B, A′)) ∧ (F(A, E) ∨ ns(E, A′))
= (X1 ∨ −K2) ∧ (X1 ∨ −X2 ∨ −X1 ∨ −X2 ∨ K2)

= (X1 ∨ −K2) ∧ 1

= (X1 ∨ −K2). (2)

Authorized licensed use limited to: National Tsing Hua Univ.. Downloaded on September 28,2020 at 07:51:37 UTC from IEEE Xplore. Restrictions apply.

CHIANG et al.: LOOPLock: LOGIC OPTIMIZATION-BASED CYCLIC LOGIC LOCKING 2185

Similarly, the first term, F(A, B) ∨ ns(B, A′) represents cycle
L4, and F(A, E) ∨ ns(E, A′) represents cycle L3, where ns(B, A′)
and ns(E, A′) are the conditions on keys and side input values
that B cannot affect A′ and E cannot affect A′, respectively. As
a result, for breaking L4, X1 has to be 1 or K2 has to be 0.
For breaking L3, X1 = 1, or X2 = 0, or X1 = 0, or X2 = 0,
or K2 = 1. The resultant key value and side input for breaking
both L4 and L3 are shown in (2). That is, X1 = 1 or K2 = 0.

The next step is to check that whether there is any input pat-
tern that could sensitize a cycle under the current constraints.
We found that X1 = 0 sensitizes cycle L4. Hence, X1 = 0
enforces K2 = 0 for breaking cycle L4. K2 = 0 implies that L3
will be selected as a correct cycle. However, L4 is a noncombi-
national cycle, but unobservable at POs. Thus, L4 is harmless
for the overall functionality. Conversely, L3 is a functionally
incorrect combinational cycle. Thus, CycSAT-II will obtain an
incorrect key value of K2 = 0 rather than the correct one of
K2 = 1. In summary, CycSAT-I and CycSAT-II both cannot
crack the proposed locking method.

C. Removal Attack

For Removal Attack, assume that the locked structures
in our method have been identified by attackers, as shown
in Fig. 8(a). Then, the attackers may directly remove the
locked structures of Type-I and Type-II cycle pairs, like MUXs
M1∼M4 and related wires, which leads to the remaining circuit
as Fig. 8(b). Hence, if the attackers cannot restore the subcir-
cuits, expressed as dotted lines, in the fanins of n1, n6, and n7,
the overall functionality of the original circuit will be changed.
Fortunately, the locations of target nodes, T1 and T2, are invis-
ible to attackers after removing the locked structures. Thus,
we can ensure that Removal Attack cannot easily decrypt the
proposed method by removing the locked structures.

Furthermore, to convincingly show that Removal Attack
is invalid to decrypt our locking technique, we assume that
the attacker has identified all the cyclic locking structures
and has removed them. Next, the attacker aims to restore the
functionality of circuit. If the attacker chooses the wire from
one input of a MUX for circuit restoration, the effect is the same
as guessing the key value at the selection line of MUX. Hence,
this restoration method is with high complexity. Alternatively,
the attacker may aim to restore the original circuit by modifying
the incomplete circuit resulted from Removal Attack. Since
some wires and nodes are disappeared from the original circuit
due to NM in the proposed logic locking method, it is quite
challenging to attackers to guess the locations for reconnecting
wires or adding nodes. If the attacker does try to restore the
circuit to its original version, i.e., without cyclic circuit, he
may encounter trial-and-error processes and pay much effort in
verification. In summary, Removal Attack does not exactly know
the locations of the merged (disappeared) nodes such that circuit
restoration becomes quite difficult and computation intensive.
Thus, the proposed method can defend Removal Attack.

D. Combination of Type-I and Type-II Cycle Pairs Against
SAT Attack and CycSAT

In Sections V-A and V-B, we have already demonstrated
the capability of Type-I cycle pair against SAT Attack, and

Fig. 8. Example circuit for demonstrating defending Removal Attack. (a)
Identified locked circuit with the combination of Type-I and Type-II cycle
pairs. (b) Remaining circuit after removing the locked structures.

the capability of Type-II cycle pair against CycSAT. However,
the result of the combination of Type-I and Type-II cycle pairs
against SAT Attack and CycSAT has not been mentioned.

First of all, an example circuit having the combination
of Type-I and Type-II cycle pairs is shown as Fig. 8(a).
For SAT Attack, it needs to construct the miter-like circuit
from Fig. 8(a) and transforms the circuit into CNF to find the
DIP. However, there exists a noncombinational cycle affecting
the POs in Type-I cycle pair, which means SAT Attack will
never be terminated or cannot find any DIP. As a result, when
there exists a Type-I cycle pair in the circuit, it can defend
SAT Attack. On the other hand, once there does not exist any
Type-I cycle pair in the circuit, it is vulnerable to SAT Attack
due to lack of noncombinational cycle affecting the POs.

For CycSAT, it needs to apply CycSAT-I and CycSAT-II
to find the keys to break cycles. When CycSAT decrypts
a circuit with the combination of Type-I and Type-II cycle
pairs, CycSAT-I will fail because the circuit always has cycles
under any key value. Then CycSAT-II will rule out all the
noncombinational cycles in the circuit. In Type-I cycle pair,
the noncombinational cycle affecting the POs is harmful to
the functionality of circuit, which means CycSAT-II correctly
rules out functionally incorrect cycles of Type-I cycle pair.
However, in Type-II cycle pair, the noncombinational cycle

Authorized licensed use limited to: National Tsing Hua Univ.. Downloaded on September 28,2020 at 07:51:37 UTC from IEEE Xplore. Restrictions apply.

2186 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 10, OCTOBER 2020

unobservable at POs is harmless to the functionality of cir-
cuit, which means CycSAT-II incorrectly rules out functionally
correct cycles of Type-II cycle pair.

After decryption, CycSAT also has to apply SAT Attack
to find the remaining key values in the circuit. However,
CycSAT-II has ruled out the functionally correct cycles in
Type-II cycle pair, which means that the functionality of the
resultant circuit has been changed. If SAT Attack directly
decrypts the resultant circuit, it is equivalent to finding DIPs in
a functionally incorrect circuit. A functionally incorrect circuit
means that the values of POs will be incorrect under any key
value, and it implies that SAT Attack will always find DIPs in
each iteration and be never terminated. Thus, once there exists
a Type-II cycle pair in the circuit, it can defend CycSAT. On
the other hand, once there does not exist any Type-II cycle
pair in the circuit, it is vulnerable to CycSAT due to the lack
of noncombinational cycle unobservable at POs.

VI. EXPERIMENTAL RESULTS

We conducted six experiments and show the results in this
section. The first experiment is to show the locking capabil-
ity of the proposed method. The second one is to show the
results when considering the tradeoff between security level
and area overhead in a benchmark. The third one is to show
results of our selection algorithm against the exhaustive attack.
The fourth one is to show the area overhead of different bench-
marks under a specific number of keys. The fifth one is to
show the results of applying SAT Attack and CycSAT to the
locked circuits. The last one is to show the results of the out-
put error rate (OER) and averaged hamming distance (Avg.
HD) to defend Removal Attack.

We implemented the proposed methods within ABC [2]
environment using C language. Our experiments were con-
ducted on a 3.0 GHz Linux platform (CentOS 4.6). The bench-
marks are from the IWLS 2005 suite [29]. Every benchmark
was transformed to the AIG in blif format, and only its
combinational part was considered in the experiments.

We show the algorithm for finding Type-I and Type-II cycle
pairs in Fig. 9. Given a circuit C, for each target node nt in
C, we compute the MAs for the stuck-at 0 fault and stuck-at
1 fault on nt. Then, according to the MAs, we can find the
node nm satisfying Condition 1 and the node ncyclic satisfy-
ing Condition 2. If ncyclic exists, we find the node nb which
blocks the effect of value changed from nt to ncyclic. Then we
check if there exists any PO between nt and nb. If so, we find
a Type-I cycle pair; otherwise, we find a Type-II cycle pair.
However, if there exists nm but not ncyclic, we check each path
Pnt in the fanout cone of nt and find the nb which blocks the
effect of value changed from nt in Pnt. If there exists any PO
between nt and nb, which means that we cannot create the
noncombinational cycle unobservable at POs; otherwise, we
can find a Type-II cycle pair. After finding all the Type-I and
Type-II cycle pairs, we lock the circuit using the structure in
Section IV, and we transfer the circuit into the bench format
for running SAT Attack and CycSAT.

Table I shows the results of the first experiment. That is, the
number of Type-I and Type-II cycle pairs that the proposed
method can identify in each benchmark. Columns 1 and 2 list

Fig. 9. Proposed algorithm for finding Type-I and Type-II cycle pairs.

benchmark name and the number of nodes in it, N. Columns 3
and 4 list the number of identified Type-I, Type-II cycle pairs,
respectively. Column 5 shows the corresponding CPU time for
identifying all these cycle pairs measured in second. According
to Table I, we can see that the proposed method is quite
feasible. It can create at least two pairs of cycles for each
type among all the benchmarks. Although these results are
circuit-dependent, most benchmarks have double digit number
of cycle pairs. The average numbers of Type-I and Type-II
cycle pair for one benchmark are 40 and 100, respectively.
Note that, in theory, only one pair of cycles for each type is
enough to defend SAT Attack, CycSAT, and Removal Attack.

Although using one cycle pair of each type in the locking
is capable of defending SAT Attack, CycSAT, and Removal
Attack, it is fragile under exhaustive attack in practice. Hence,
in the second experiment, we select at most 16 cycle pairs of
each type to lock each benchmark. Using 16 cycle pairs of
each type in the locking means that the length of key-vector
is 32 bits, and the total number of key-vectors is 232, which
is an intractable problem to attackers using exhaustive attack.
The experimental results are shown in Table II. For one cycle
pair of each type, our method will remove the target node nt as
well as single-fanout nodes in the fanin cone of nt. Meanwhile,
our method will add two MUXes for one cycle pair of each
type. This node count increase is quite stable for one cycle
pair. Nenc column in Table II represents the resultant node
count when at most 16 cycle pairs of each type are added for

Authorized licensed use limited to: National Tsing Hua Univ.. Downloaded on September 28,2020 at 07:51:37 UTC from IEEE Xplore. Restrictions apply.

CHIANG et al.: LOOPLock: LOGIC OPTIMIZATION-BASED CYCLIC LOGIC LOCKING 2187

TABLE I
RESULTS OF OUR METHOD IN IDENTIFYING ALL THE TYPE-I AND

TYPE-II PAIRS

locking. Column 6 is the required CPU time. The last column
is the corresponding percentage of area overhead.

According to Table II, we can see that the average area
overhead is 6.20% for all the benchmarks. If we exclude the
benchmarks with less than 1000 nodes, e.g., C432, C1908,
and sasc, the percentage of area overhead will be even lower.
On the other hand, in our method, the security level can be ele-
vated by adding more cycle pairs if available, with a little more
area overhead. Note that the required CPU time for bench-
marks with similar size is various a lot possibly. For example,
b20 and b21 have similar size, but the required CPU time for
adding the same amount of Type-I and Type-II cycle pairs is
significantly different. The main reason about this difference
is the functionality of benchmark. The proposed method is
based on NM technique, which exploits logic implications to
find the CSNs. Hence, each benchmark has its complexity for
finding cycle pairs, regardless of the circuit size.

It is worthy mentioning that the proposed method has the
following shortcoming. Since the effectiveness of the proposed
method is circuit-dependent, it is probably that only few cycle
pairs can be constructed in a circuit, like the benchmarks
des_area, i2c, and sasc. Nevertheless, good news is that our
method can identify many (>16) Type-I and Type-II cycle pairs
for benchmarks with larger node count (>10 000) due to the

TABLE II
RESULTS OF OUR METHOD IN IDENTIFYING 16 PAIRS OF CYCLES

existence of many ODCs in these benchmarks. Thus, for large
VLSI designs, our method is still promising and applicable.

Furthermore, to demonstrate the defensiveness of the
proposed locking scheme against the exhaustive attack, in
addition to the experiment in Table II, we have also conducted
another experiment, which is a defense evaluation about
assuming that an attacker divides a circuit into logic cones
and then guesses the partial key-vector exhaustively. If we did
not consider any selection strategy in the locking procedure,
the locations of inserted key gates may not be in the fanin cone
of the same PO, which lowers the security level of locked cir-
cuits. Thus, we propose a selection algorithm for the cycle
pair insertion such that the cycle pairs will be clustered in
the fanin cone of one PO. The new results of our approach
with the proposed selection algorithm are shown in Table III.
In Table III, the number of inserted Type-I and Type-II cycle
pairs are both 16. The last column shows the maximal num-
ber of cycle pair in the fanin cone of one PO. According
to Table III, we can see that clustering 32 cycle pairs into
the fanin cone of one PO is possible for almost all bench-
marks. The pseudo code of the selection algorithm for cycle
pair insertion is shown in Fig. 10. In Fig. 10, given a circuit C,
for each cycle pair Cp, we calculate the number of POs in the
fanout cone of Cp. Then, we can obtain the number of cycle
pairs in the fanin cone of each PO. We select the PO that has
the most cycle pairs, max_cp, in its fanin cone. If max_cp is
larger than or equal to 32, we arbitrarily select 32 cycle pairs

Authorized licensed use limited to: National Tsing Hua Univ.. Downloaded on September 28,2020 at 07:51:37 UTC from IEEE Xplore. Restrictions apply.

2188 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 10, OCTOBER 2020

TABLE III
RESULTS OF OUR SELECTION ALGORITHM AGAINST THE EXHAUSTIVE

ATTACK

Fig. 10. Proposed new selection algorithm for inserting cycle pairs.

from its fanin cone as the final cycle pairs Pmax. If max_cp is
smaller than 32, we include these cycle pairs into the set Pmax.
Next, we repeat this operation until the size of the set Pmax
reaches 32. If the size of Pmax is less than 32 when selecting
all the number of cycle pairs, we select all of them as Pmax.

Next, we demonstrate the fourth experiment about the area
overhead of different benchmarks under specific numbers of

Fig. 11. Experiments for demonstrating the area overhead of different
benchmarks under specific numbers of key-vectors.

keys. Here, we choose some benchmarks from Table II that
can be locked by at least 16 cycle pairs of each type, such
as C7552, s38417, and b17, to show the tradeoff between
the total number of key-vectors and area overhead in Fig. 11.
We observed that the area overhead positively related to the
total number of key-vectors. Among the benchmarks, there
are three groups with similar node count, one is the small-size
group with C7552, another is the medium-size group with
s38417, the other is the large-size group with b17.

For all the groups, the area overhead is similar when the
total numbers of key-vectors are 22 and 24, which are all less
than 1%. However, when the number of key-vectors increases
to 232, the area overhead of small-size group grows to near 8%,
while for large-size group, the area overhead is less that 1%.
This result shows that our method can achieve a high security
level with a little area overhead for large-size circuits.

In addition to the experiment of area overhead, we also con-
ducted another experiment about timing and power overhead.
Table IV shows the experimental results of timing and power
overhead under at most 16 cycle pairs of each type. Columns 4
and 5 show the level of critical path in the original circuits and
locked circuits, respectively. For inserting each cycle pair, we
add at least two MUXes in our locking structure. If the cycle
pair is inserted on the critical path, it will affect the delay of the
locked circuit. According to Table IV, we found that for some
benchmarks, like C7552 and s38584, the levels of critical path
do not increase a lot. However, for some benchmarks like b20
and b22, the levels of critical path increase a lot. We realized
that the reason for this difference is the circuit structure. As we
know, to have Type-I and Type-II cycle pairs, the circuit struc-
ture has to satisfy some requirements like the conditions in
NM [4], [5] and NM-based cycle generation [3]. If the critical
path satisfies the requirements for having cycle pairs, we may
still insert the cycle pairs on it. Thus, the level of critical path
could be increased. Columns 6 and 7 show the dynamic power
of the original circuits and locked circuits, respectively.

According to Table IV, most benchmarks only have little
dynamic power overhead due to the minor increase of area
after cycle pair insertion. However, for some benchmarks like

Authorized licensed use limited to: National Tsing Hua Univ.. Downloaded on September 28,2020 at 07:51:37 UTC from IEEE Xplore. Restrictions apply.

CHIANG et al.: LOOPLock: LOGIC OPTIMIZATION-BASED CYCLIC LOGIC LOCKING 2189

TABLE IV
RESULTS OF OUT METHOD ABOUT TIMING AND POWER OVERHEAD

dalu and des_area, their power overhead is large. The reason
for this large power overload in the locked circuits of dalu
and des_area is oscillating behavior. Since our locking scheme
allows having noncombinational cycles under the correct key-
vectors, the signals in these noncombinational cycles may be
continuously switched such that the power overhead increases.
However, for large circuits, which have many Type-I and
Type-II cycle pairs to be inserted, we can choose the cycle
pairs whose noncombinational cycles do not have oscillating
behavior. Thus, the proposed locking scheme is still promis-
ing and applicable from the viewpoint of dynamic power
overhead.

Furthermore, we also show the results of applying SAT
Attack and CycSAT to the locked circuits in Table V. In
this experiment, we only generated one Type-I cycle pair
and one Type-II cycle pair for each benchmark as shown in
Columns 2 and 3 since one Type-I cycle pair and one Type-II
cycle pair are enough to defend SAT Attack and CycSAT.
Columns 4 and 5 show the results and corresponding CPU time
after applying SAT Attack. The results are either UNSAT or
Inf. loop (infinite loop), which is consistent with the security
evaluation mentioned in Section V. This is because the non-
combinational cycle in Type-I cycle pair of our method makes
SAT solvers never be terminated or UNSAT. The required CPU
time is also very little. Columns 6 and 7 show the results and
corresponding CPU time after applying CycSAT. The results
are all Inf. loop, this is because the algorithm of CycSAT can-
not effectively find the condition to break the cycle, which
causes the follow-up SAT Attack fail to find DIPs due to the
noncombinational cycle.

TABLE V
RESULTS OF OUR METHOD FOR DEFENDING SAT ATTACK AND CYCSAT

Finally, in the last experiment, to show high complexity of
restoring the functionality after Removal Attack, we conducted
the experiment that compares the hamming distance (HD)
and OER between the original circuit and the recovered one.
The experimental setting is as follows: we chose a key-vector
and applied it to the locked circuit. Then we observe the differ-
ences at the outputs of the original circuit and recovered one
under 1000 random patterns. If any PO has a different value
under a pattern, we count one. Then, we can obtain the OER
of the recovered circuit. We also calculate the averaged HD
of the outputs of two circuits for all the simulated patterns.
The experimental results are shown in Table VI. In Table VI,
Column 2 shows the benchmarks and the number of POs.
Columns 3 and 4 show the numbers of inserted Type-I and
Type-II cycle pairs. Columns 5 and 6 show the results of OER
and the averaged HD between the original circuit and recov-
ered one. Column 7 shows the ratio of the averaged HD and
the number of POs in each benchmark. According to Table VI,
we observed that most circuits have 100% OER, which means
that Removal Attack cannot easily restore the functionality
of the original circuit. However, for some benchmarks like
C1908, C5315, and dalu, they have lower OER. The reasons
are that the number of cycle pairs is not 32, or the number
of outputs is few. These factors affect OER significantly. For
the averaged HD, the result shows that this value varies a lot,
and its reasons are the same as for the OER. The ratio of
averaged HD and the number of POs is up to 30% for more
than half benchmarks, which means that many outputs are still
incorrect when Removal Attack is applied. Thus, our method
is still promising and applicable.

Authorized licensed use limited to: National Tsing Hua Univ.. Downloaded on September 28,2020 at 07:51:37 UTC from IEEE Xplore. Restrictions apply.

2190 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 10, OCTOBER 2020

TABLE VI
RESULTS OF OER AND AVG. HD TO DEFEND REMOVAL ATTACK

VII. CONCLUSION

In this article, we proposed a cyclic logic locking method
to invalidate the state-of-the-art attacking methods. The exper-
imental results show that the proposed method is able to lock
the general combinational benchmarks with low area overhead.
It is promising to push forward the progress of logic locking
techniques with the proposed method.

ACKNOWLEDGMENT

The authors would like to thank the NuLogiCS research
group led by Prof. H. Zhou for providing the program of
CycSAT. They also thank Y. Li for his quick responses to
their questions about the program.

REFERENCES

[1] K. Z. Azar, H. M. Kamali, H. Homayoun, and A. Sasan, “SMT
attack: Next generation attack on obfuscated circuits with capabilities
and performance beyond the SAT Attacks,” IACR Trans. Cryptograph.
Hardw. Embedded Syst., vol. 2019, no. 1, pp. 97–122, 2018. [Online].
Available: https://tches.iacr.org/index.php/TCHES/article/view/7335

[2] Berkeley Logic Synthesis and Verificaiton Group. Accessed:
Jul. 12, 2019. ABC: A System for Sequential Synthesis and Verification.
[Online]. Available: http://www.eecs.berkeley.edu/alanmi/abc

[3] J.-H. Chen, Y.-C. Chen, W.-C. Weng, C.-Y. Huang, and C.-Y. Wang,
“Synthesis and verification of cyclic combinational circuits,” in Proc.
IEEE Int. Syst. Chip Conf. (SOCC), 2015, pp. 257–262.

[4] Y.-C. Chen and C.-Y. Wang, “Fast node merging with don’t cares using
logic implications,” Proc. IEEE/ACM Int. Conf. Comput.-Aided Design
Dig. Tech. Papers (ICCAD), 2009, pp. 785–788.

[5] Y.-C. Chen and C.-Y. Wang, “Fast node merging with don’t cares using
logic implications,” IEEE Trans. Comput.-Aided Design Integr. Circuits
Syst., vol. 29, no. 11, pp. 1827–1832, Nov. 2010.

[6] A. Chakraborty, Y. Liu, and A. Srivastava, “TimingSAT: Timing pro-
file embedded SAT attack,” Proc. IEEE/ACM Int. Conf. Comput.-Aided
Design Dig. Tech. Papers (ICCAD), 2018, pp. 1–6.

[7] M. Chen, E. Moghaddam, N. Mukherjee, J. Rajski, J. Tyszer, and
J. Zawada, “Hardware protection via logic locking test points,” IEEE
Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 37, no. 12,
pp. 3020–3030, Dec. 2018.

[8] J. A. Roy, F. Koushanfar, and I. L. Markov, “Ending piracy of integrated
circuits,” Computer, vol. 43, no. 10, pp. 30–38, 2010.

[9] A. Rezaei, Y. Shen, S. Kong, J. Gu, and H. Zhou, “Cyclic locking
and memristor-based obfuscation against CycSAT and inside foundry
attacks,” in Proc. Design Autom. Test Europe Conf. Exhibit. (DATE),
2018, pp. 85–90.

[10] A. Rezaei, Y. Li, Y. Shen, S. Kong, and H. Zhou, “CycSAT-unresolvable
cyclic logic encryption using unreachable states,” in Proc. Asia South
Pacific Design Autom. Conf. (ASPDAC), 2019, pp. 358–363.

[11] S. Roshanisefat, H. M. Kamali, and A. Sasan, “SRClock: SAT-resistant
cyclic logic locking for protecting the hardware,” in Proc. Great Lakes
Symp. VLSI (GLSVLSI), 2018, pp. 153–158.

[12] A. Sengupta and M. Rathor, “Security of functionally obfuscated DSP
core against removal attack using SHA-512 based key encryption
hardware,” IEEE Access, vol. 7, pp. 4598–4610, 2018.

[13] K. Shamsi, M. Li, T. Meade, Z. Zhao, D. Z. Pan, and Y. Jin, “Cyclic
obfuscation for creating SAT-unresolvable circuits,” in Proc. Great Lakes
Symp. VLSI (GLSVLSI), 2017, pp. 173–178.

[14] K. Shamsi, M. Li, T. Meade, Z. Zhao, D. Z. Pan, and Y. Jin, “AppSAT:
Approximately deobfuscating integrated circuits,” in Proc. IEEE Int.
Symp. Hardw. Oriented Security Trust (HOST), 2017, pp. 95–100.

[15] P. Subramanyan, S. Ray, and S. Malik, “Evaluating the security of
logic encryption algorithms,” in Proc. IEEE Int. Symp. Hardw. Oriented
Security Trust (HOST), 2015, pp. 137–143.

[16] Y. Shen, A. Rezaei, and H. Zhou, “A comparative investigation of
approximate attacks on logic encryptions,” in Proc. Asia South Pacific
Design Autom. Conf. (ASP-DAC), 2018, pp. 271–276.

[17] Y. Shen, A. Rezaei, and H. Zhou, “SAT-based bit-flipping attack on
logic encryptions,” in Proc. Design Autom. Test Europe Conf. Exhibit.
(DATE), 2018, pp. 629–632.

[18] Y. Shen and H. Zhou, “Double DIP: Re-evaluating security of logic
encryption algorithms,” in Proc. Great Lakes Symp. VLSI (GLSVLSI),
2018, pp. 179–184.

[19] Y. Shen, Y. Li, S. Kong, A. Rezaei, and H. Zhou, “SigAttack: New high-
level SAT-based attack on logic encryptions,” in Proc. Design Autom.
Test Europe Conf. Exhibit. (DATE), 2019, pp. 940–943.

[20] Y. Shen, Y. Li, A. Rezaei, S. Kong, D. Dlott, and H. Zhou, “BeSAT:
Behavioral SAT-based attack on cyclic logic encryption,” in Proc. Asia
South Pacific Design Autom. Conf. (ASP-DAC), 2019, pp. 657–662.

[21] Y. Xie and A. Srivastava, “Delay locking: Security enhancement of
logic locking against IC counterfeiting and overproduction,” in Proc.
ACM/EDAC/IEEE Design Autom. Conf. (DAC), 2017, pp. 1–6.

[22] Y. Xie and A. Srivastava, “Mitigating SAT Attack on logic locking,”
in Proc. Int. Conf. Cryptograph. Hardw. Embedded Syst., 2016,
pp. 127–146.

[23] M. Yasin, B. Mazumdar, J. Rajendran, and O. Sinanoglu, “SARlock:
SAT attack resistant logic locking,” in Proc. IEEE Int. Symp. Hardw.
Orient. Security Trust (HOST), 2016, pp. 236–241.

[24] M. Yasin, A. Sengupta, M. T. Nabeel, M. Ashraf, J. Rajendran, and
O. Sinanoglu, “Provably-secure logic locking: From theory to practice,”
in Proc. ACM Conf. Comput. Commun. Security, 2017, pp. 1601–1618.

[25] M. Yasin, B. Mazumdar, O. Sinanoglu, and J. Rajendran,
“Removal attacks on logic locking and camouflaging tech-
niques,” IEEE Trans. Emerg. Topics Comput., to be published,
doi: 10.1109/TETC.2017.2740364.

[26] M. Yasin, B. Mazumdar, O. Sinanoglu, and J. Rajendran, “Security
analysis of anti-SAT,” in Proc. Asia South Pacific Design Autom. Conf.
(ASP-DAC), 2016, pp. 342–347.

[27] G. L. Zhang, B. Li, B. Yu, D. Z. Pan, and U. Schlichtmann,
“TimingCamouflage: Improving circuit security against counterfeiting
by unconventional timing,” in Proc. Design Autom. Test Europe Conf.
Exhibit. (DATE), 2018, pp. 91–96.

[28] H. Zhou, R. Jiang, and S. Kong, “CycSAT: SAT-based attack on cyclic
logic encryptions,” in Proc. IEEE/ACM Int. Conf. Comput.-Aided Design
Dig. Tech. Papers (ICCAD), 2017, pp. 49–56.

[29] IWLS2005 Benchmarks. Accessed: Jul. 12, 2019. [Online]. Available:
http://iwls.org/iwls2005/benchmarks.html

Authorized licensed use limited to: National Tsing Hua Univ.. Downloaded on September 28,2020 at 07:51:37 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1109/TETC.2017.2740364

CHIANG et al.: LOOPLock: LOGIC OPTIMIZATION-BASED CYCLIC LOGIC LOCKING 2191

Hsiao-Yu Chiang received the B.S. degree from the
Department of Computer Science, National Taipei
University of Education, Taipei, Taiwan, in 2017.
He is currently pursuing the M.S. degree with the
Department of Computer Science, National Tsing
Hua University, Hsinchu, Taiwan.

His current research interests include hardware
security and electrical design automation.

Yung-Chih Chen received the B.S., M.S., and Ph.D.
degrees from the Department of Computer Science,
National Tsing Hua University, Hsinchu, Taiwan, in
2003, 2005, and 2011, respectively.

He is currently an Assistant Professor with the
Department of Computer Science and Engineering,
Yuan Ze University, Taoyuan, Taiwan. His current
research interests include logic synthesis, design
verification, and design automation for emerging
technologies.

De-Xuan Ji received the B.S. and M.S. degrees
from the Department of Computer Science, National
Tsing Hua University, Hsinchu, Taiwan, in 2016 and
2018, respectively.

His current research interests include hardware
security and electrical design automation.

Xiang-Min Yang received the B.S. degree from
the Department of Computer Science, National
Tsing Hua University, Hsinchu, Taiwan, in 2018.
He is currently pursuing the M.S. degree with the
Department of Computer Science, National Tsing
Hua University, Hsinchu, Taiwan.

His current research interests include hardware
security and electrical design automation.

Chia-Chun Lin received the B.S. and M.S. degrees
from the Department of Computer Science, National
Tsing Hua University, Hsinchu, Taiwan, in 2011 and
2013, respectively, where he is currently pursuing
the Ph.D. degree.

His current research interests include logic syn-
thesis, optimization, verification for VLSI designs,
and automation for emerging technologies.

Chun-Yao Wang (Member, IEEE) received the
B.S. degree from the Department of Electronics
Engineering, National Taipei University of
Technology, Taipei, Taiwan, in 1994, and the
Ph.D. degree from the Department of Electronics
Engineering, National Chiao Tung University,
Hsinchu, Taiwan, in 2002.

Since 2003, he has been an Assistant Professor
with the Department of Computer Science, National
Tsing Hua University, Hsinchu, where he is cur-
rently a Distinguished Professor. He has published

over 70 technical papers in these areas and is a named inventor in 9
patents. His current research interests include logic synthesis, optimization,
and verification for very large-scale integrated/system-on-chip designs and
emerging technologies.

Dr. Wang was the recipient of the Best Paper Award in 2018 IEEE
International Symposium on VLSI Design, Automation and Test. Two of
his research results were nominated as Best Papers in the 2009 IEEE Asia
and South Pacific Design Automation Conference and the 2010 IEEE/ACM
Design Automation Conference, respectively.

Authorized licensed use limited to: National Tsing Hua Univ.. Downloaded on September 28,2020 at 07:51:37 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

